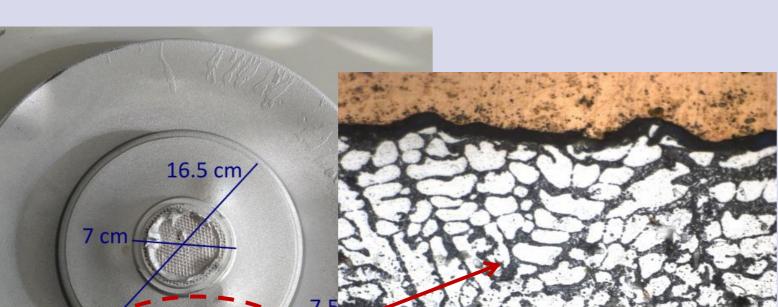


Bay Zoltán Alkalmazott Kutatási Közhasznú Nonprofit Kft. / Mérnöki Divízió Bay Zoltán Nonprofit Ltd. For Applied Research / Engineering Division www.bayzoltan.hu

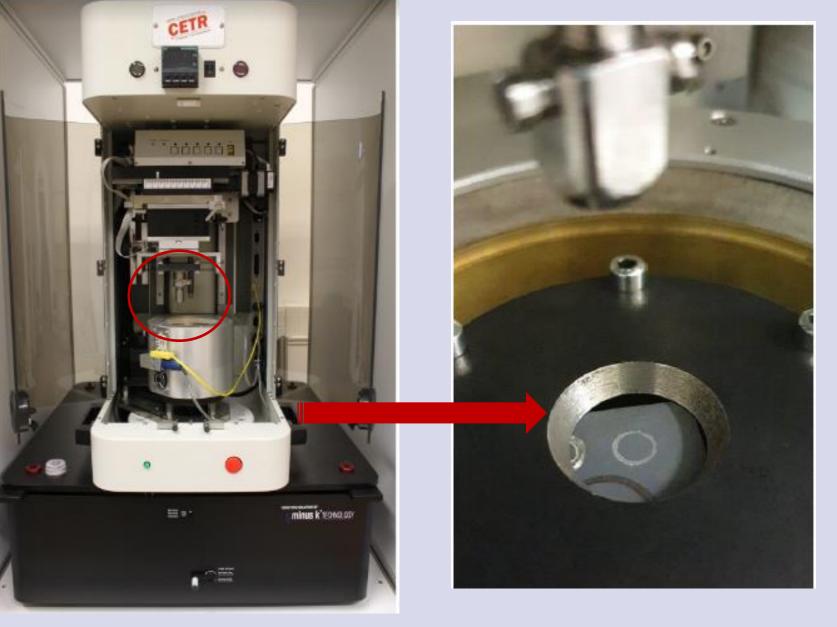
Tribological examination of anodized AI-356 automotive alloy

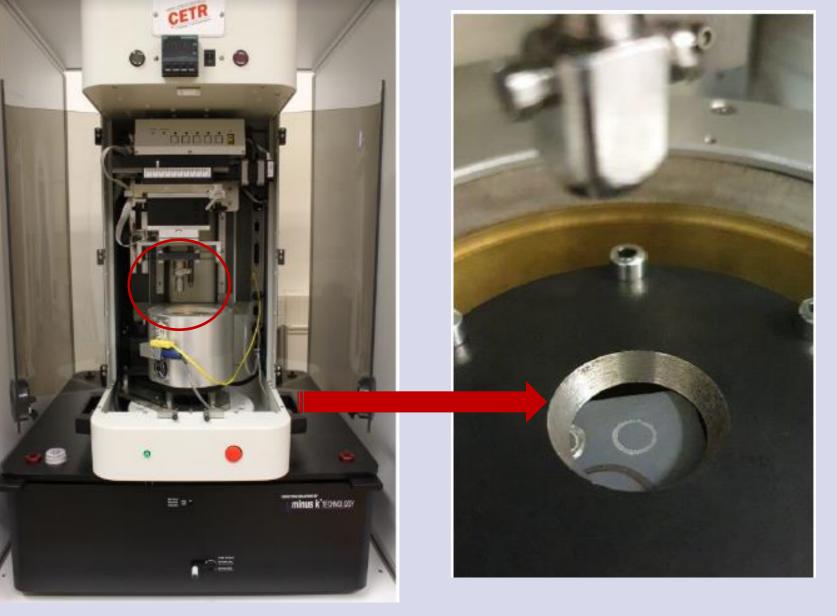
Noemi LASZLO¹, Nora TAKACS²


¹ Head of Laboratory ² junior researcher

1. INTRODUCTION

The use of aluminum alloys in the automotive industry is becoming increasingly important due to its favorable properties (low density, mechanical strength, etc.) the properties of aluminum alloys can be improved by surface modification and treatment processes. In the present research, we made an attempt to improve the wear and corrosion resistance of AI 356 brake disc base material (AI-Si eutectic alloy) by oxalic acid anodizing surface treatment. in the case of the layers separated with different treatment parameters, their surface roughness and hardness were determined, and their tribological analyzes were analyzed with the help of ball-on disc arrangement. the results show that the parameters used during anodization significantly influence the wear resistance of aluminum alloys


2. LAYER **CHARACTERISTICS**


Parameters of anidizng						
Current density(A/dm ²)	2					
Current (A)	1,4					
T _{treatment} (h)	2					
C _{oxalic} (g/L)	70					
T (°C)	10-15					

3. TEST PARAMETERS

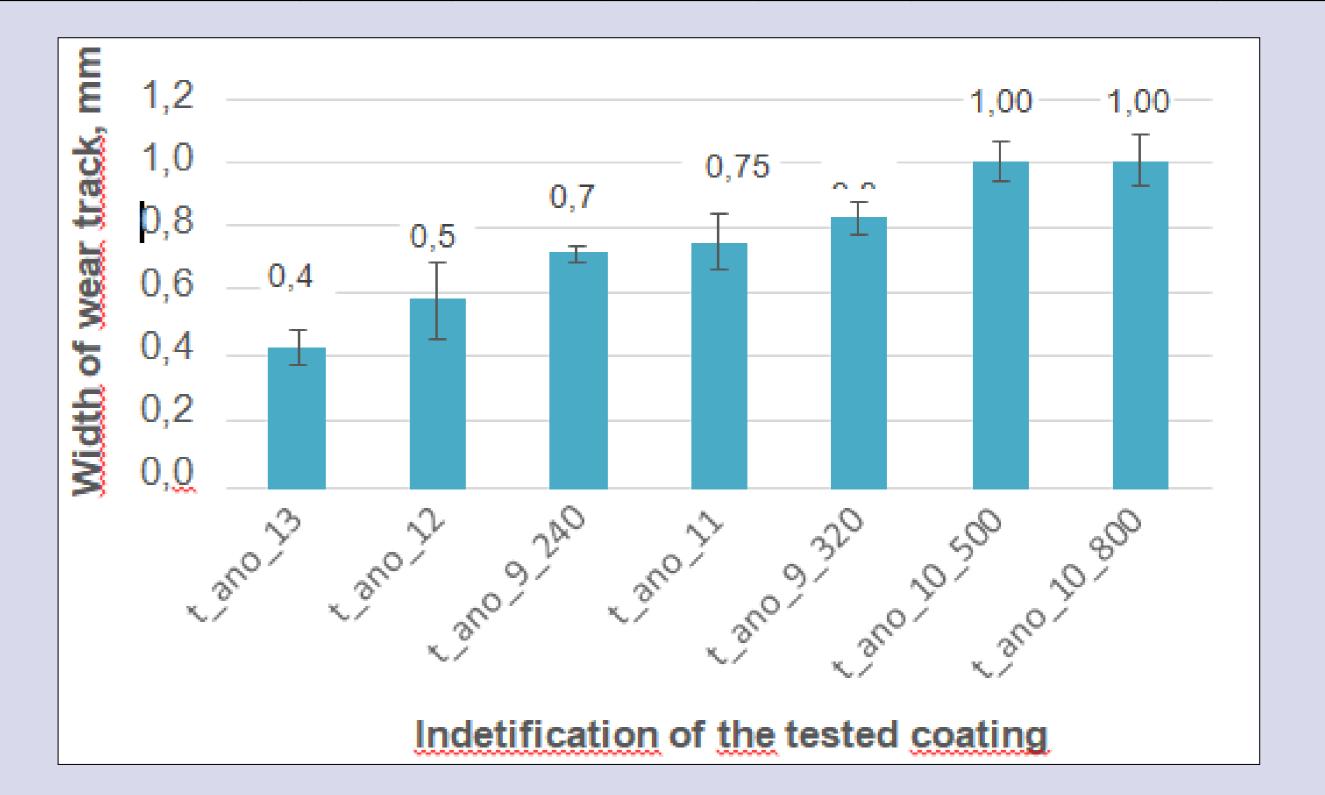
- Test speciment: UNMT-1 multifunctional modular micro-nano surface test system;
- Normal load: 10 N;
- Sliding speed: 10 mm/s;

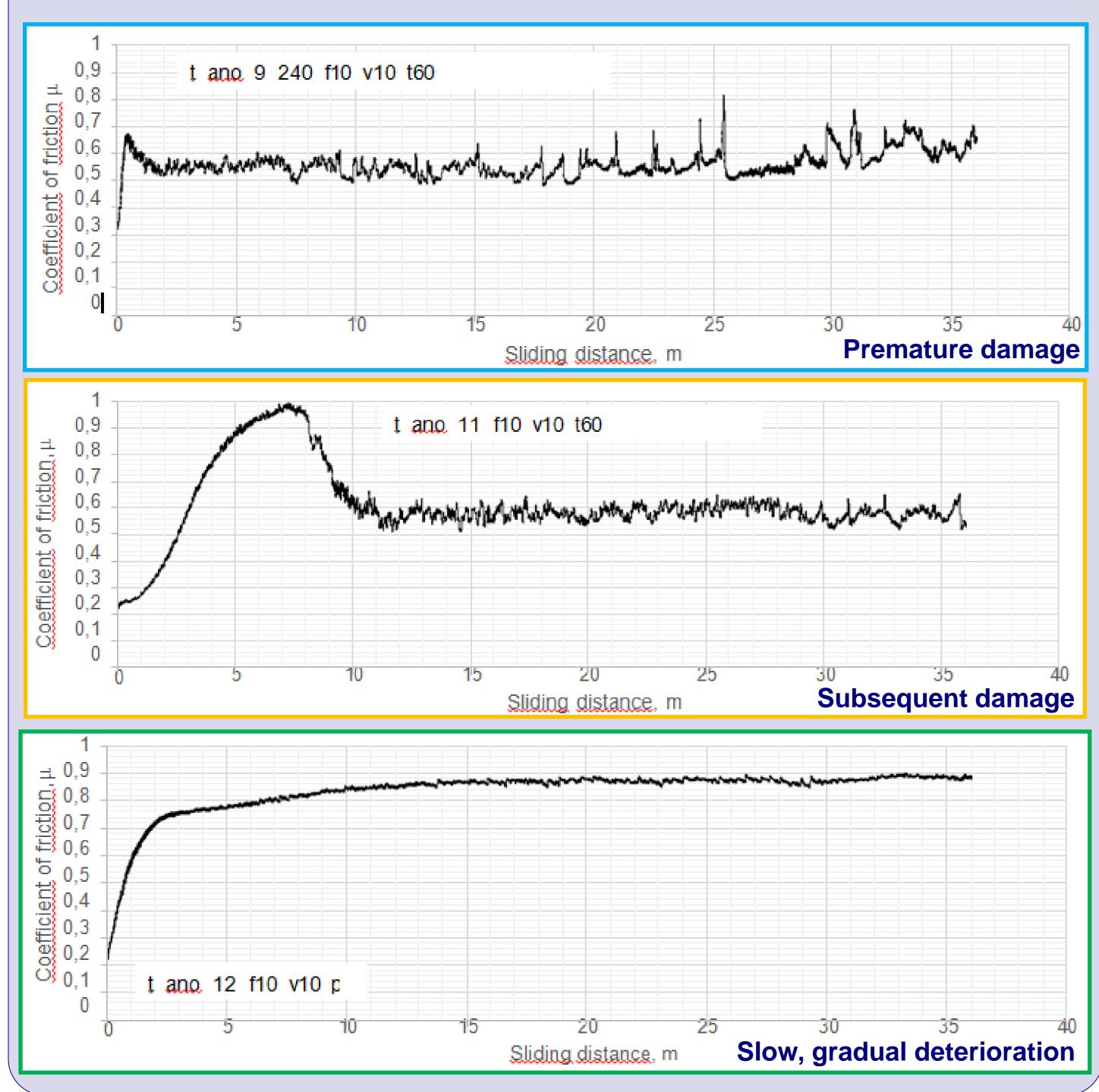
	7.5	B.H.	
021		XX E	<u>Бо µт</u>
~/21/R.	26		

	The identification mark of the examined layer									
Sample	t_ano_9_ 240	t_ano_9_ 320	t_ano_10 _500	t_ano_10 _800	t_ano_11	t_ano_12	t_ano_13			
Thickness, d / mm	23.1	22.9	35.6	41.4	27.9	47.8	45			
R _a / mm before anodizing	1.5	1.6	5.1	4.2	1.1	0.9	1.02			
R _a / mm after anodizing	1.21	1.13	4.63	3.55	0.91	0.66	1.06			
HV C	371	258	379	409	608	506	510			

WEAR BEHAVIOR OF ANODIZED SAMPLES

Table 1. Categorization og tested coatings according to wear behavior

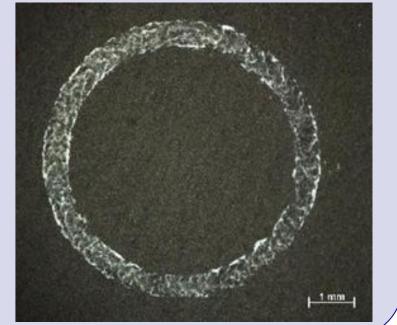

		Identification of the tested coating													
	t_ar		t_ano_ t_ano_		no_	t_ano_		t_ano_		t_ano_		t_ano_		t_ano_13	
Category	9_2	240	9_ 3	820	10_	500	10_	800	11		12				
of wear	wear		Wear track												
	p1	p2	p1	p2	p1	p2	p1	p2	p1	p2	p3	p5	p1	p2	p3
Α															
B															
С															


- Sliding radius: 3 mm;
- Tribopair: ϕ 5.96mm, ZrO₂ ball;
- Testing temperature: 29±2 °C;
- Medium: air;
- Frictional state: unlubricated..


Determination of wear track width 5.

The width of the wear track was measured on each abrasion trace in four perpendicular sections according to the standard.
 Table 2. Width of wear tracks

			Identif	ication of	the tested o	coating	
Width of wear track	t_ano_ 9_240	t_ano_ 9_320	t_ano_ 10_500	t_ano_ 10_800	t_ano_ 11	t_ano_ 12	t_ano_ 13
Average, mm	0,72	0,82	1,00	1,00	0,75	0,57	0,43
Pointing error, mm	0,02	0,05	0,06	0,08	0,08	0,12	0,05
Variance cof., %	3,3	6,3	6,1	7,5	10,9	20,4	12,6



The wear pattern of the coating t ano 10 500 clearly shows that the coating is completely detached during abrasion, and that a distinctive form of abrasive wear, the so-called abrasive wear, is applied to the soft, metallic substrate. traces of microfabrication wear [2] are visible

In contrast, the abrasion mark on the t_ano_13 coating shows only partial damage to the coating layer;

The coating t_ano_10_500 is more than 20% thinner than the t_ano_13 coating, and the average roughness of the surface is more than four times lower in case of less favorable behavior

References

- [B. C. Mutsuddy, R. G. Ford (1995): Ceramic Injection Molding. Chapman&Hall, London.
- M. Trunec, J. Cihlar, Thermal removal of multicomponent binder from ceramic injection mouldings. Journal of the European Ceramic Society, 2002/22.
- US5135977 Injection molding composition, M. Achikita, A. Ohtsuka, Sumito Metal Mining Co. (Tokyo). 1990.

6. CONCLUSION

Based on ball-on-disc comparative abrasion tests on Si and Mg aluminum alloys, friction coefficient-abrasion path length diagrams, as well as analysis of the morphological features of abrasion traces, as well as in short - they can be summarized below.

- The coating that performs best in the selected tribo system, that is, most resistant to abrasion under the given loading conditions, is the coating t_ano_13;
- under the present test conditions, t_ano_13 resp. with the exception of the t_ano_12 samples, complete abrasion of the coating is observed;
- In terms of wear resistance, the t_ano 500 and 800 layers are considered to be the weakest

Cím/address: H-1116 Budapest, Fehérvári út 130. Levelezési cím: H-1509 Budapest Pf.: 53. Mailing address: H-1509 Budapest P.O.Box 53.

Telefon/phone: +36-1/463-0545

Fax: +36-1/463-0529

E-mail: bay-ati@bayzoltan.hu

Web: www.bayzoltan.hu

